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Abstract

The development of the robust visual intelligence is one

of the long-term challenging problems. From the perspec-

tive of artificial intelligence evaluation, the need to discover

and explain the potential shortness of the evaluated intel-

ligent algorithms/systems as well as the need to evaluate

the intelligence level of such testees are of equal impor-

tance. In this paper, we propose a possible solution to these

challenges: Explainable Evaluation for visual intelligence.

Compared to the existing work on Explainable AI, we focus

on the problem setting where the internal mechanisms of

AI algorithms are sophisticated, heterogeneous or unreach-

able. In this case, the interpretability of test output is formu-

lated as an semantic embedding to the existing correlation

between factors of data variances and test outputs. Dictio-

nary learning is introduced to jointly estimate the semantic

mapping and the semantic representations for explanation.

The optimal solution of proposed method could be reached

via an alternating optimization process. The application of

the “Explainable AI Evaluation” will strengthen the influ-

ence of objective assessment for visual intelligence.

1. Introduction

Recently we have witnessed a series of success that vi-

sual perception and understanding in traffic environment

has achieved with the help of emerging artificial intelligence

techniques, such as vehicle and pedestrian detection, recog-

nition and semantic segmentation, etc. These data-driven

visual methods learn discriminative representations with re-

spect to the factors of visual appearance variances and try

to handle all of them. However, the test and applications of

such methods reveal that the reliability could not be guar-

anteed in many real world situations like poor illumination,

motion blur, spot area, noises caused by extreme weathers

and etc. Therefore, developing autonomous visual percep-

tion methods is still one of the most challenging problems.

In the long-run research and development process, it is

crucial to explore the blind spots and failure modes of cer-

tain visual perception methods. Despite the performance

degradation which visual approaches could not handle in-

trinsically, such disadvantages may be caused by the bias of

training set[8] as well as the intrinsic capability of designed

architecture of certain approaches. Most recently, several

techniques has been developed to address discovering po-

tential training set bias [13] and interpreting the learned

visual representations of deep networks w.r.t. the network

performance[1]. Based on the hypothesis that interpretabil-

ity is an property of the learned representations[1], these

methods tend to explain the effect of components like con-

volutional layers or batch normalization of the given net-

work architecture. Here we define this kind of property as

intra-interpretability since it comes from the its own ar-

chitecture design.

In this paper we focus on the interpretability comes

from the exploration on external test data, i.e. inter-

interpretability, when the structure and implementation

details of certain method are invisible. Such “blackbox”

problem setting is common in the benchmarks for visual al-

gorithms [3, 2] or artificial intelligent tests and evaluations

[6, 11, 10]. The backbone assumption is that for the same

intelligent approach in a certain evaluation process, the data

variations are the major influence to the variations in out-

put performance. In this case, if we can find a semantic

embedding of human domain knowledge to the factors of

data variance, we might be able to establish the descriptive

relationship between semantic concepts and output perfor-

mance.

To this end, we propose “explainable AI evaluation”

for mining the inter-interpretability for the performance of

autonomous perception intelligence, as shown in Fig. 1.

We address first to infer the deterministic relationship by

Ridge Regression between factors of data variances (de-

noted as Disentangled Variables) and test outputs of certain

AI method according to its performance variances under

variances of test data. Further, the semantic mapping from

human domain knowledge to Disentangled Variables, along

with the semantic representations (denoted as Explainable

Representations) simultaneously, is obtained by subspace

1 20



Figure 1. The flowchart of proposed explainable AI evaluation framework. The Correlation Φs between Disentangled Variables Xs is

obtained firstly through Ridge Regression. The rest of problem solving could be viewed as a dictionary learning process where DictionaryD

and Explainable Representations YS are estimated jointly, under the constraints that D,ΦY ,Φs should be consistent. In this way, we can

finally obtain an Explainable Mapping ΦY to interpret test outputs by estimated Explainable Representations YS .

embedding of semantic concepts in human domain knowl-

edge via dictionary learning. As a consequence, the rela-

tionship between Disentangled Variables and test outputs

could be interpreted partly by knowledges and concepts in

the way that humans would understand.

The contributions of this paper is two-fold:

1. The concept of interpretability is introduced into vi-

sual intelligence evaluation, resulting in presentation

of “explainable AI evaluation”.

2. The problem is formulated as an semantic embedding

to the existing correlation between Disentangled Vari-

ables and test outputs, the optimal solution of which

is obtained via alternating optimization process, as

shown in Section. 2.

We believe that “intra-interpretability” and “inter-

interpretability” are equally important for visual AI meth-

ods. The application of the latter one in intelligence test and

evaluation will strengthen the influence of objective assess-

ment in the long-term research and development of visual

intelligence and hence contributes to the further improve-

ment of visual AI.

2. Proposed Approach

We propose a framework for explaining the test outputs

O (L-dimensional) by Explainable Mapping ΦY , as shown

in Fig. 1. Intrinsically, it implies to predict how and to what

extent does the variations associated with human domain-

knowledge influence the unknown testee, resulting in the

variations in test outputs.

To this end, we need to firstly extract the factors of data

variations from the input test data. These factors, namely

Disentangled Variables, have the definite correlation with

the test outputs, which is the backbone of machine learning

theory.

Disentangled Variables, which encodes the complex

variations of the input data, are of high dimensions.

Such representations may be beyond human understand-

ing. Hence, we assume without the loss of generality that

the variations which could be described by human domain

knowledge, i.e. Explainable Representations, are sparse

subsets of Disentangled Variables.

We further propose that such sparse mapping need to be

consistent with the Explainable Mapping and the correla-

tion mapping between Disentangled Variables and test out-

pus. In this way, these mappings could be predicted jointly

utilizing dictionary learning.

2.1. Notations

Suppose there are n labeled samples Qs = {Is, As, Os}
where Is denotes the input test images, As = {AS , AO}
is the domain knowledge annotation in both object level

(Location, Orientation, and etc.) and scenario level (Ge-

ometry, Topology and etc.). Os is the test output of cer-

tain intelligent method under given visual task. For ex-

ample, Os could be a set of per-image mean accuracy or

F-score in Detection or per-image mean Intersection-over-

Union(IoU) in Segmentation, corresponding to the input Is.

Due to the paragraph limitation, here we assume that the d-

dimensional Disentangled Variables Xs w.r.t. each Is has

been explored by certain disentangled learning approach
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like [7].(Although it is still an open question.) Given Qs

and Xs, the goal of our method is to find an optimal Ex-

plainable Mapping ΦY from unknown Explainable Repre-

sentations Ys to the test outputs Os.

2.2. Correlation Analysis

We start our approach by performing correlation analysis

between the factors of data variations and variable test out-

puts, which is a multi-variate regression problem inherently.

In order to prevent singular matrix caused by multicollinear-

ity, we utilize Ridge Regression to explore this correlation

Φs by minimizing the following loss, similar as [12]:

argmin
Φs

‖Os − ΦsXs‖
2

F + λ ‖Φs‖
2

F (1)

The analytic solution could be obtained as follows,

Φs = OsX
T
s (XsX

T
s + λI)−1 (2)

Here we suppose that the pre-computed orthogonal Disen-

tangled Variables Xs could effectively represent factors of

data variations. In this case, low rank constraints could be

used to select variables which tend to have an obvious influ-

ence by forcing the coefficients of variables which perform

no effect to be zeros.

2.3. Explainable Mapping

Given Disentangled Variables Xs and corresponding an-

notation As, the key to enable interpretability for variable-

output correlation Φs lies in the embedding of annotation

As in the space of Disentangled Variables Xs. As stated

above, Xs is of high dimensions where only a small part of

variables could be explained by human domain knowledge.

Considered that the multicollinearity of As may com-

promise the linear mapping between Xs and As, we pro-

pose to use a linear transformation of As, i.e. Explainable

Representations Ys, to explain the outputs Os via the Ex-

plainable Mapping ΦY , constrained by the mapping con-

sistency ‖ΦY Ys − ΦSDYs‖
2

F . The loss function of our

approach is given as follows,

arg min
D,Ys,W,ΦY

‖Xs −DYs‖
2

F + λ1 ‖Ys −WAs‖
2

F

+ λ2 ‖Os − ΦY Ys‖
2

F + λ3 ‖ΦY − ΦSD‖
2

F ,

s.t. ‖di‖
2

2
6 1, ‖wi‖

2

2
6 1, ‖φi‖

2

2
6 1, ∀i

(3)

where D is the learned dictionary and Ys is sparse repre-

sentations of Xs w.r.t. D. W is the linear transformation

mapping between Ys and As.

2.4. Optimization

From Eq. 3 we are able to determine the non-convex

characteristics of the proposed framework. However, alter-

nating optimization could be applied since each term of the

Algorithm 1 Alternating optimization method for solving

explainable mapping

Ensure: Disentangled Variables Xs, Test Outputs Os, hu-

man knowledge annotations As, Correlation Φs, La-

grangian multipliers λ1, λ2, λ3

Require: Dictionary D, Explainable Representations Ys,

Explainable Mapping ΦY , Latent Mapping W

1: Initialize D,Ys,ΦY , W.

2: while not converge do

3: Compute Ys = (D̃T
D̃)−1

D̃
T
X̃.

4: Solve (XsY
T
s + λ3Φ

T
s ΦY ) = DYsY

T
s +

λ3Φ
T
s ΦsD by [4].

5: Compute W = (YsA
T
s )(AsA

T
s + Λ1)

−1.

6: Compute ΦY = (λ3ΦsD+λ2OsY
T
s )(λ2YsY

T
s +

λ3I+ Λ2)
−1.

7: end while

loss function is convex by itself, as in [5]. Comparably,

our optimization process, as shown in Alg. 1, is a little bit

more complex due to the augmentation of an extra term of

unknown variables, where

X̃ =





Xs

λ1WAs

λ2Os



 , D̃ =





D

λ1I

λ2ΦY



 , (4)

and Λ1,Λ2 are constructed diagonal matrices.

3. Experiments

3.1. Details

Dataset details. To sufficiently and profoundly eval-

uate visual intelligence for recognition and understanding

in road traffic environment, we manually selected 1400 in-

consecutive images of 14307 annotated vehicle instances

from TSD-Max dataset1 to build a diverse and difficult vi-

sual benchmark set, namely Explainable Visual Benchmark

(EVB) dataset.

Parameter details.The 4096-dimensional visual feature

of each image is extracted by the ImageNet pre-trained

VGGNet as the Disentangled Variables Xs. Besides, the

per-image attributes As discussed in [11] and [9] are an-

notated as a 21-dimensional vector, including Road Type,

Scenario Type, Acquisition Time, Weather Conditions and

Complex Illuminations. Moreover, three different vehicle

detection networks, i.e. Mask-RCNN, SSD and YOLO (all

pre-trained on MS-COCO dataset), are evaluated on the

proposed EVB dataset. For each algorithm, we obtain the

per-image performance, including Precision, Recall and F-

score as Os.
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Table 1. Top-5 attributes which contributes to the F-scores of Mask-RCNN Detection Performance estimated by Ridge Regression, LASSO

and Our Method. (+ means positive influence while - means negative influence)

Methods 1st 2nd 3rd 4th 5th

Ridge Regression Intersection(+1.00) Overcast(+0.81) Sunny(-0.71) City(-0.54) Tunnel(-0.51)

LASSO Tunnel(-1.00) Residential(+0.57) Night(+0.36) Toll(+0.30) Intersection(+0.27)

Ours Tunnel(-1.00) Residential(+0.91) Toll(+0.51) Night(-0.38) Intersection(+0.37)

Figure 2. The estimated interpretable mapping between se-

mantic concepts and output vehicle detection performance of

pre-trained Mask-RCNN.

3.2. Qualitative Results

The interpretability of the output performance Os lies

in the correlation mapping ΦY W with semantic annota-

tions As. Fig. 2 illustrates the absolute influence of the

semantic concepts (21 dimensions) to the output perfor-

mance (3 dimensions) of pre-trained Mask-RCNN. For ex-

ample, the 9th column, “Sunny Days” , has little impact on

the performance because the majority of the selected im-

ages (944/1400) are acquired under this weather condition.

It could be also observed that the 15th column, “Tunnel”,

however influences the detection performance drastically,

which matches the human intuition.

We further compare the Top-5 attributes predicted by

Ridge Regression, LASSO and the proposed method re-

spectively, as described in Table. 1. Our method is con-

sistent with the predicted results by LASSO regression in

general, but the prediction for the contribution of “Night”

attribute to the overall F-score differs from each other. Con-

sidering that the average F-score Mask-RCNN achieved on

images annotated with“Night” is lower than the mean aver-

age F-score, our method characterizes the relationship be-

tween the “Night” attribute and the detection performance

more reasonably.

4. Conclusion

In this paper, we introduce the concept of “Explain-

able AI Evaluation” based on the interpretation of test out-

puts of certain AI method using human domain knowledge.

Such problem is formulated as a dictionary learning pro-

cess, where Explainable Representations and semantic em-

bedding are jointly obtained with the constraints on map-

ping consistency. Optimal solution is achieved via alternat-

ing optimization. The proposed framework could be bene-

ficial to the intelligence test and evaluation for visual AI.

1http://trafficdata.xjtu.edu.cn/index.do
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